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Abstract. We establish learning rates to the Bayes risk for support vec-
tor machines (SVMs) using a regularization sequence λn = n−α, where
α ∈ (0, 1) is arbitrary. Under a noise condition recently proposed by Tsy-
bakov these rates can become faster than n−1/2. In order to deal with the
approximation error we present a general concept called the approxima-
tion error function which describes how well the infinite sample versions
of the considered SVMs approximate the data-generating distribution.
In addition we discuss in some detail the relation between the “classical”
approximation error and the approximation error function. Finally, for
distributions satisfying a geometric noise assumption we establish some
learning rates when the used RKHS is a Sobolev space.

1 Introduction

The goal in binary classification is to predict labels y ∈ Y := {−1, 1} of unseen
data points x ∈ X using a training set T =

(
(x1, y1), . . . , (xn, yn)

) ∈ (X × Y )n.
As usual we assume that both the training samples (xi, yi) and the new sample
(x, y) are i.i.d. drawn from an unknown distribution P on X × Y . Now given a
classifier C that assigns to every T a function fT : X → R the prediction of C for
y is sign fT (x), where we choose a fixed definition of sign(0) ∈ {−1, 1}. In order
to “learn” from T the decision function fT : X → R should guarantee a small
probability for the misclassification, i.e. sign fT (x) �= y, of the example (x, y).
To make this precise the risk of a measurable function f : X → R is defined by

RP (f) := P
({(x, y) : sign f(x) �= y}) ,

and the smallest achievable risk RP := inf{RP (f) | f : X → R measurable}
is known as the Bayes risk of P . A function fP attaining this risk is called a
Bayes decision function. Obviously, a good classifier should produce decision
functions whose risks are close to the Bayes risk with high probability. To make
this precise, we say that a classifier is universally consistent if

ET∼P nRP (fT ) −RP → 0 for n → ∞. (1)

Unfortunately, it is well known that no classifier can guarantee a convergence
rate in (1) that simultaneously holds for all distributions (see [1–Thm. 7.2]).
However, if one restricts considerations to suitable smaller classes of distributions
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such rates exist for various classifiers (see e.g. [2, 3, 1]). One interesting feature of
these rates is that they are not faster than n−1/2 if the considered distributions
P are allowed to be noisy in the sense of RP > 0. On the other hand, if one
restricts considerations to noise-free distributions P in the sense of RP = 0 then
some empirical risk minimization (ERM) methods can actually learn with rate
n−1 (see e.g. [1]). Remarkably, it was only recently discovered (see [4, 5]) that
there also exists classes of noisy distributions which can be learned with rates
between n−1/2 and n−1. The key property of these classes is that their noise
level x �→ 1/2−|η(x)−1/2| with η(x) := P (y = 1|x) is well-behaved in the sense
of the following definition.

Definition 1. A distribution P on X × Y has Tsybakov noise exponent q ∈
[0,∞], if there exists a C > 0 such that for all sufficiently small t > 0 we have

PX

({x ∈ X : |2η(x) − 1| ≤ t}) ≤ C · tq . (2)

Obviously, all distributions have at least noise exponent 0. At the other ex-
treme, (2) is satisfied for q = ∞ if and only if the conditional probability η is
bounded away from the critical level 1/2. In particular this shows that noise-free
distributions have exponent q = ∞.

The aim of this work is to establish learning rates for support vector machines
(SVMs) under Tsybakov’s noise assumption which are comparable to the rates
of [4, 5]). Therefore let us now recall these classification algorithms: let X be
a compact metric space and H be a RKHS over X with continuous kernel k.
Furthermore, let l : Y ×R → [0,∞) be the hinge loss which is defined by l(y, t) :=
max{0, 1 − yt}. Then given a training set T ∈ (X × Y )n and a regularization
parameter λ > 0 SVMs solve the optimization problems

(f̃T,λ, b̃T,λ) := arg min
f∈H
b∈R

λ‖f‖2
H +

1
n

n∑

i=1

l
(
yi, f(xi) + b

)
, (3)

or

fT,λ := arg min
f∈H

λ‖f‖2
H +

1
n

n∑

i=1

l
(
yi, f(xi)

)
, (4)

respectively. Furthermore, in order to control the size of the offset we always
choose b̃T,λ := y∗ if all samples of T have label y∗. As usual we call algorithms
solving (3) L1-SVMs with offset and algorithms solving (4) L1-SVMs without
offset. For more information on these methods we refer to [6].

The rest of this work is organized as follows: In Section 2 we first introduce
two concepts which describe the richness of RKHSs. We then present our main
result and discuss it. The following sections are devoted to the proof of this result:
In Section 3 we recall some results from [7] which are used for the analysis of
the estimation error, and in Section 4 we then prove our main result. Finally,
the relation between the approximation error and infinite sample SVMs which
is of its own interest is discussed in the appendix.
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2 Definitions and Results

For the formulation of our results we need two notions which deal with the
richness of RKHSs. While the first notion is a complexity measure in terms of
covering numbers which is used to bound the estimation error, the second one
describes the approximation properties of RKHSs with respect to distributions.

In order to introduce the complexity measure let us recall that for a Banach
space E with closed unit ball BE , the covering numbers of A ⊂ E are defined by

N (A, ε,E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n⋃

i=1

(xi+εBE)
}

, ε > 0.

Given a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y )n we denote the space
of all equivalence classes of functions f : X × Y → R equipped with norm

‖f‖L2(T ) :=

(
1
n

n∑

i=1

∣
∣f(xi, yi)

∣
∣2

) 1
2

(5)

by L2(T ). In other words, L2(T ) is a L2-space with respect to the empirical
measure of T . Note, that for a function f : X×Y → R a canonical representative
in L2(T ) is the restriction f|T . Furthermore, we write L2(TX) for the space of all
(equivalence classes of) square integrable functions with respect to the empirical
measure of x1, . . . , xn. Now our complexity measure is:

Definition 2. Let H be a RKHS over X and BH its closed unit ball. We say
that H has complexity exponent 0 < p ≤ 2 if there exists a constant c > 0 such
that for all ε > 0 we have

sup
TX∈Xn

logN (
BH , ε, L2(TX)

) ≤ cε−p .

By using the theory of absolutely 2-summing operators one can show that
every RKHS has complexity exponent p = 2. However, for meaningful rates we
need complexity exponents which are strictly smaller than 2.

In order to introduce the second notion describing the approximation prop-
erties of RKHSs we first have to recall the infinite sample versions of (3) and (4).
To this end let l be the hinge loss function and P be a distribution on X × Y .
Then for f : X → R the l-risk of f is defined by Rl,P (f) := E(x,y)∼P l(y, f(x)).
Now given a RKHS H over X and λ > 0 we define

(f̃P,λ, b̃P,λ) := arg min
f∈H
b∈R

(
λ‖f‖2

H + Rl,P (f + b)
)

(6)

and
fP,λ := arg min

f∈H

(
λ‖f‖2

H + Rl,P (f)
)

(7)

(see [8] for the existence of these minimizers). Note that these definitions give
the solutions (f̃T,λ, b̃T,λ) and fT,λ of (3) and (4), respectively, if P is an empirical
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distribution with respect to a training set T . In this case we write Rl,T (f) for
the (empirical) l-risk.

With these notations in mind we define the approximation error function by

a(λ) := λ‖fP,λ‖2
H + Rl,P (fP,λ) −Rl,P , λ ≥ 0 , (8)

where Rl,P := inf{Rl,P (f) | f : X → R} denotes the smallest possible l-risk.
Note that since the obvious variant of a(.) that involves an offset is not greater
than the above approximation error function, we restrict our attention to the
latter. Furthermore, we discuss the relationship between a(.) and the standard
approximation error in the appendix.

The approximation error function quantifies how well an infinite sample L1-
SVM with RKHS H approximates the minimal l-risk. It was shown in [8] that
if H is dense in the space of continuous functions C(X) then for all P we have
a(λ) → 0 if λ → 0. However, in non-trivial situations no rate of convergence
which uniformly holds for all distributions P is possible. The following definition
characterizes distributions which guarantee certain polynomial rates:

Definition 3. Let H be a RKHS over X and P be a probability measure on
X × Y . We say that H approximates P with exponent 0 ≤ β ≤ 1 if there exists
a constant C > 0 such that for all λ > 0 we have

a(λ) ≤ Cλβ .

Note, that H approximates every distribution P with exponent β = 0. We
will see in the appendix that the other extremal case β = 1 is equivalent to the
fact that the minimal l-risk can be achieved by an element fl,P ∈ H.

With the help of the above notations we can now formulate our main result.

Theorem 1. Let H be a RKHS of a continuous kernel on a compact metric
space X with complexity exponent 0 < p < 2, and let P be a probability measure
on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞. Furthermore, assume that
H approximates P with exponent 0 < β ≤ 1. We define λn := n−α for some
α ∈ (0, 1) and all n ≥ 1. If α < 4(q+1)

(2q+pq+4)(1+β) then there exists a C > 0 with

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn

) ≤ RP + Cx2n−αβ
)

≥ 1 − e−x

for all n ≥ 1 and x ≥ 1. Here Pr∗ is the outer probability of Pn in order to
avoid measurability considerations. Furthermore, if α ≥ 4(q+1)

(2q+pq+4)(1+β) then for
all ε > 0 there is a C > 0 such that for all x ≥ 1, n ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn

) ≤ RP + Cx2n− 4(q+1)
(2q+pq+4)+α+ε

)
≥ 1 − e−x .

Finally, the same results hold for the L1-SVM with offset whenever q > 0.
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Remark 1. The best rates Theorem 1 can guarantee are (up to an ε) of the form

n− 4β(q+1)
(2q+pq+4)(1+β) ,

and an easy calculation shows that these rates are obtained for the value α :=
4(q+1)

(2q+pq+4)(1+β) . This result has already been announced in [9] and presented in an
earlier (and substantially longer) version of [7]. The main difference of Theorem
1 to its predecessors is that it does not require to choose α optimally. Finally
note that unfortunately the optimal α is in terms of both q and β, which are in
general not accessible. At the moment we are not aware of any method which
can adaptively find the (almost) optimal values for α.

Remark 2. In [5] it is assumed that a Bayes classifier is contained in the base
function classes the considered ERM method minimizes over. This assumption
corresponds to a perfect approximation of P by H, i.e. β = 1, as we will see in
the apppendix. If in this case we rescale the complexity exponent p from (0, 2) to
(0, 1) and write p′ for the new complexity measure our optimal rate essentially
becomes n

− q+1
q+p′q+2 . Recall that this is exactly the form of Tsybakov’s result in

[5] which is known to be optimal in a minmax sense for some specific classes
of distributions. However, as far as we know our complexity measure cannot be
compared to Tsybakov’s and thus the above reasoning only indicates that our
optimal rates may be optimal in a minmax sense.

Let us finally present an example which shows how the developed theory can
be used to establish learning rates for specific types of kernels and distributions.

Example 1 (SVMs using Sobolev spaces). Let X ⊂ R
d be the closed unit Euclid-

ian ball, Ω be the centered open ball of radius 3, and Wm(Ω) be the Sobolev
space of order m ∈ N over Ω. Recall that Wm(Ω) is a RKHS of a continuous
kernel if m > d/2 (see e.g. [10]). Let us write Hm := {f|X : f ∈ Wm(Ω)} for
the restriction of Wm(Ω) onto X endowed with the induced RKHS norm. Then
(see again [10]) the RKHS Hm has complexity exponent p := d/m if m > d/2.

Now let P be a distribution on X × Y which has geometric noise exponent
α ∈ (0,∞] in the sense of [7], and let kσ(x, x′) := exp(−σ2‖x−x′‖), x, x′ ∈ Ω, be
a Gaussian RBF kernel with associated integral operator Tσ : L2(Ω) → L2(Ω),
where L2(Ω) is with respect to the Lebesgue measure. Then by the results in [7–
Secs. 3 & 4] there exist constants cd, cα,m,d ≥ 1 such that for all σ > 0 there exists
an fσ ∈ L2(Ω) with ‖fσ‖L2(Ω) = cdσ

d, Rl,P ((Tσfσ)|X) − Rl,P ≤ cα,m,dσ
−αd,

and ‖(Tσfσ)|X‖Hm
≤ cα,m,dσ

m−d/2‖fσ‖L2(Ω). This yields a constant c > 0 with

a(λ) ≤ c
(
λσ2m+d + σ−αd

)

for all σ > 0 and all λ > 0. Minimizing with respect to σ then shows that
Hm approximates P with exponent β := αd

(α+1)d+2m . Consequently we can use
Theorem 1 to obtain learning rates for SVMs using Hm for m > d/2. In particular
the resulting optimal rates in the sense of Remark 1 are (essentially) of the form

n− 4αdm(q+1)
(2mq+dq+4m)(2αd+d+2m) .
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3 Prerequisites

In this section we recall some important notions and results that we require in
the proof of our main theorem. To this end let H be a RKHS over X that has
a continuous kernel k. Then recall that every f ∈ H is continuous and satisfies

‖f‖∞ ≤ K‖f‖H ,

where we use
K := sup

x∈X

√
k(x, x).

The rest of this section recalls some results from [7] which will be used to
bound the estimation error of L1-SVMs. Before we state these results we have to
recall some notation from [7]: let F be a class of bounded measurable functions
from a set Z to R, and let L : F × Z → [0,∞) be a function. We call L a loss
function if L ◦ f := L(f, .) is measurable for all f ∈ F . Moreover, if F is convex,
we say that L is convex if L(., z) is convex for all z ∈ Z. Finally, L is called line-
continuous if for all z ∈ Z and all f, f̂ ∈ F the function t �→ L(tf +(1− t)f̂ , z) is
continuous on [0, 1]. Note that if F is a vector space then every convex L is line-
continuous. Now, given a probability measure P on Z we denote by fP,F ∈ F a
minimizer of the L-risk

f �→ RL,P (f) := Ez∼P L(f, z).

If P is an empirical measure with respect to T ∈ Zn we write fT,F and RL,T (.)
as usual. For simplicity, we assume throughout this section that fP,F and fT,F
do exist. Also note that although there may exist multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of
this symbol can be expected. Furthermore, an algorithm that produces solutions
fT,F for all possible T is called an empirical L-risk minimizer.

Now the main result of this section, shown in [7], reads as follows:

Theorem 2. Let F be a convex set of bounded measurable functions from Z to
R and let L : F ×Z → [0,∞) be a convex and line-continuous loss function. For
a probability measure P on Z we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F}

. (9)

Suppose we have c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ
and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is separable with
respect to ‖.‖∞ and that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN (
B−1G, ε, L2(T )

) ≤ aε−p (10)

for all ε > 0. Then there exists a constant cp > 0 depending only on a and p
such that for all n ≥ 1 and all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RL,P (fT,F ) > RL,P (fP,F ) + cp ε(n,B, c, δ, x)

)
≤ e−x ,
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where

ε(n,B, c, δ, x) := B
2p

4−2α+αp c
2−p

4−2α+αp n− 2
4−2α+αp + B

p
2 δ

2−p
4 n− 1

2 + Bn− 2
2+p

+
(δx

n

) 1
2

+
(cx

n

) 1
2−α

+
Bx

n
.

Let us now recall some variance bounds of the form EP g2 ≤ c (EP g)α + δ for
SVMs proved in [7]. To this end let H be a RKHS of a continuous kernel over
X, λ > 0, and l be the hinge loss function. We define

L(f, x, y) := λ‖f‖2
H + l

(
y, f(x)

)
(11)

and
L(f, b, x, y) := λ‖f‖2

H + l
(
y, f(x) + b

)
(12)

for all f ∈ H, b ∈ R, x ∈ X, and y ∈ Y . Since RL,T (.) and RL,T (., .) coincide with
the objective functions of the L1-SVM formulations we see that the L1-SVMs
actually implement an empirical L-risk minimization in the sense of Theorem 2.
Now the first variance bound from [7] does not require any assumptions on P .

Proposition 1. Let 0 < λ < 1, H be a RKHS over X, and F ⊂ λ− 1
2 BH .

Furthermore, let L be defined by (11), P be a probability measure and G be
defined as in (9). Then for all g ∈ G we have

EP g2 ≤ 2λ−1(2 + K)2EP g .

Finally, the following variance bound from [7] shows that the previous bound
can be improved if one assumes a non-trivial Tsybakov exponent for P .

Proposition 2. Let P be a distribution on X×Y with Tsybakov noise exponent
0 < q ≤ ∞. Then there exists a constant C > 0 such that for all λ > 0,
all 0 < r ≤ λ−1/2 satisfying f̃P,λ ∈ rBH , all f ∈ rBH , and all b ∈ R with
|b| ≤ Kr + 1 we have

E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)2

≤ C(Kr + 1)
q+2
q+1

(
E

(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)) q
q+1

+ C(Kr + 1)
q+2
q+1 a

q
q+1 (λ) .

Furthermore, the same result holds for SVMs without offset.

4 Proof of Theorem 1

In this section we prove Theorem 1. To this end we write f(x) � g(x) for two
functions f, g : D → [0,∞), D ⊂ (0,∞), if there exists a constant C > 0 such
that f(x) ≤ Cg(x) holds over some range of x which usually is implicitly defined
by the context. However for sequences this range is always N. Finally we write
f(x) ∼ g(x) if both f(x) � g(x) and g(x) � f(x) for the same range.

Since our variance bounds have different forms for the cases q = 0 and q > 0
we have to prove the theorem for these cases separately. We begin with the case
q = 0 and an important lemma which describes a “shrinking technique”.
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Lemma 1. Let H and P be as in Theorem 1. For γ > −β we define λn :=
n− 1

1+β+γ . Now assume that there are constants 0 ≤ ρ < β and C ≥ 1 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Cxλ
ρ−1
2

n

)
≥ 1 − e−x

for all n ≥ 1, x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for
ρ̂ := min

{
β, ρ+β+γ

2 , β + γ
}

and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Ĉxλ
ρ̂−1
2

n

)
≥ 1 − e−x .

Proof. Let f̂T,λn
be a minimizer of RL,T on Cxλ

ρ−1
2

n BH , where L is defined by
(11). By our assumption we have f̂T,λn

= fT,λn
with probability not less than

1 − e−x since fT,λn
is unique for every training set T by the strict convexity of

L. We will show that for some C̃ > 0 and all n ≥ 1, x ≥ 1 the improved bound

‖f̂T,λn
‖ ≤ C̃xλ

ρ̂−1
2

n (13)

holds with probability not less than 1 − e−x. Consequently, ‖fT,λn
‖ ≤ C̃xλ

ρ̂−1
2

n

will hold with probability not less than 1 − 2e−x. Obviously, the latter implies
the assertion. In order to establish (13) we will apply Theorem 2 to the mod-
ified L1-SVM classifier that produces f̂T,λn

. To this end we first observe that
the separability condition of Theorem 2 is satisfied since H is separable and
continuously embedded into C(X). Furthermore it was shown in [7] that the
covering number condition holds and by Proposition 1 we may choose c such
that c ∼ xλ−1

n , and δ = 0. Additionally, we can obviously choose B ∼ λ
(ρ−1)/2
n .

The term ε(n,B, c, δ, x) in Theorem 2 can then be estimated by

ε(n,B, c, δ, x) � xλ
(ρ−1)p
2+p

n λ
− 2−p

2+p
n n− 2

2+p + x2λ
ρ−1
2

n n− 2
2+p + xλ−1

n n−1

� x2λ
pρ+2β+2γ

2+p
n + x2λβ+γ

n .

Now for ρ ≤ β + γ we have ρ+β+γ
2 ≤ pρ+2β+2γ

2+p , and hence we obtain

ε(n,B, c, δ, x) � x2λ
ρ+β+γ

2
n + x2λβ+γ

n .

Furthermore, if ρ > β + γ we have both β + γ < pρ+2β+2γ
2+p and β + γ < ρ+β+γ

2 ,
and thus we again find

ε(n,B, c, δ, x) � x2λβ+γ
n ∼ x2λβ+γ

n + x2λ
ρ+β+γ

2
n .

Now, in both cases Theorem 2 gives a constant C̃1 > 0 independent of n and x
such that for all n ≥ 1 and all x ≥ 1 the estimate

λn‖f̂T,λn
‖2 ≤ λn‖f̂T,λn

‖2 + Rl,P (f̂T,λn
) −Rl,P

≤ λn‖f̂P,λn
‖2 + Rl,P (f̂P,λn

) −Rl,P + C̃1x
2λ

ρ+β+γ
2

n +C̃1x
2λβ+γ

n
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holds with probability not less than 1 − e−x. Furthermore, by Theorem 4 we
obtain ‖fP,λn

‖ ≤ λ
(ρ−1)/2
n ≤ Cxλ

(ρ−1)/2
n for large n which gives fP,λn

= f̂P,λn

for such n. With probability not less than 1 − e−x we hence have

λn‖f̂T,λn
‖2 ≤ λn‖fP,λn

‖2 + Rl,P (fP,λn
) −Rl,P + C̃1x

2λ
ρ+β+γ

2
n +C̃1x

2λβ+γ
n

≤ C̃2λ
β
n + C̃1x

2λ
ρ+β+γ

2
n +C̃1x

2λβ+γ
n

for some constants C̃1, C̃2 > 0 independent of n and x. From this we easily
obtain that (13) holds for all n ≥ 1 with probability not less than 1 − e−x. ��
Proof (of Theorem 1 for q = 0). We first observe that there exists a γ > −β

with α = 4(q+1)
(2q+pq+4)(1+β+γ) . We fix this γ and define ρ0 := 0 and ρi+1 :=

min
{
β, ρi+β+γ

2 , β + γ
}
. Then it is easy to check that this definition gives

ρi = min
{

β, (β + γ)
i∑

j=1

2−j , β + γ
}

= min
{
β, (β + γ)(1 − 2−i)

}
.

Now, iteratively applying Lemma 2 gives a sequence of constants Ci > 0 with

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Cixλ
ρi−1

2
n

)
≥ 1 − e−x (14)

for all n ≥ 1 and all x ≥ 1. Let us first consider the case −β < γ ≤ 0. Then we
have ρi = (β + γ)(1 − 2−i), and hence (14) shows that for all ε > 0 there exists
a constant C > 0 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Cxλ
(1−ε)(β+γ)−1

2
n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. We write ρ := (1−ε)(β+γ). As in the proof of Lemma

1 we denote a minimizer of RL,T on Cxλ
ρ−1
2

n BH by f̂T,λn
. We have just seen

that f̂T,λn
= fT,λn

with probability not less than 1 − e−x. Therefore, we only
have to apply Theorem 2 to the modified optimization problem which defines
f̂T,λn

. To this end we first see as in the proof of Lemma 1 that

ε(n,B, c, δ, x) � x2λ
pρ+2β+2γ

2+p
n + x2λβ+γ

n � x2λ
pρ+2β+2γ

2+p
n � x2λβ+γ−ε

n ,

where in the last two estimates we used the definition of ρ. Furthermore, we have
already seen in the proof of Lemma 1 that λn‖f̂P,λn

‖2 + Rl,P (f̂P,λn
) −Rl,P ≤

a(λn) holds for large n. Therefore, applying Theorem 2 and an inequality of
Zhang (see [11]) between the excess classification risk and the excess l-risk we
find that for all n ≥ 1 we have with probability not less than 1 − e−x:

RP (f̂T,λn
) −RP ≤ 2λn‖f̂T,λn

‖2 + 2Rl,P (f̂T,λn
) − 2Rl,P

≤ 2λn‖f̂P,λn
‖2 + 2Rl,P (f̂P,λn

) − 2Rl,P + C̃1x
2λβ+γ−ε

n

≤ C̃2λ
β+γ−ε
n , (15)
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where C̃1, C̃2 > 0 are constants independent of n and x. Now, from (15) we
easily deduce the assertion using the definition of λn and γ.

Let us finally consider the case γ > 0. Then for large integers i we have
ρi = β, and hence (14) gives a C > 0 such that for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Cxλ
β−1

2
n

)
≥ 1 − e−x .

Proceeding as for γ ≤ 0 we get ε(n,B, c, δ, x) � x2λ
pβ+2β+2γ

2+p
n + x2λβ+γ

n � x2λβ
n ,

from which we easily obtain the assertion using the definition of λn and γ. ��

In the rest of this section we will prove Theorem 1 for q > 0. We begin with
a lemma which is similar to Lemma 1.

Lemma 2. Let H and P be as in Theorem 1. For γ > −β we define λn :=
n− 4(q+1)

(2q+pq+4)(1+β+γ) . Now assume that there are ρ ∈ [0, β) and C ≥ 1 with

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Cxλ
ρ−1
2

n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for
ρ̂ := min

{
β, ρ+β+γ

2

}
and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn

‖ ≤ Ĉxλ
ρ̂−1
2

n

)
≥ 1 − e−x .

The same result holds for L1-SVM’s with offset.

Proof. For brevity’s sake we only prove this Lemma for L1-SVM’s with offset.
The proof for L1-SVM’s without offset is almost identical.

Now, let L be defined by (12). Analogously to the proof of Lemma 1 we denote

a minimizer of RL,T (., .) on Cxλ
ρ−1
2

n (BH × [−K − 1,K + 1]) by (f̂T,λn
, b̂T,λn

).

By our assumption (see [7]) we have |b̃T,λn
| ≤ Cxλ

ρ−1
2

n (K + 1) with probability
not less than 1 − e−x for all possible values of the offset. In addition, for such
training sets we have f̂T,λn

= f̃T,λn
since the RKHS component f̃T,λn

of L1-SVM
solutions is unique for T by the strict convexity of L in f . Furthermore, by the
above considerations we may define b̂T,λn

:= b̃T,λn
for such training sets. As in

the proof of Lemma 1 it now suffices to show the existence of a C̃ > 0 such that

‖f̂T,λn
‖ ≤ C̃xλ

ρ̂−1
2

n with probability not less than 1 − e−x. To this end we first
observe by Proposition 2 that we may choose B, c and δ such that

B ∼ xλ
ρ−1
2

n , c ∼ x
q+2
q+1 λ

ρ−1
2 · q+2

q+1
n , and δ ∼ x

q+2
q+1 λ

ρ−1
2 · q+2

q+1+ βq
q+1

n .

Some calculations then show that ε(n,B, c, δ, x) in Theorem 2 satisfies

ε(n,B, c, δ, x) � x2λ
ρ+β+γ

2
n + x2λ

(ρ+β+γ)(2q+pq+4)+2βq(2−p)
8(q+1)

n .
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Furthermore observe that we have ρ ≤ β − γ if and only if ρ + β+γ ≤
(ρ+β+γ)(2q+pq+4)+2βq(2−p)

4(q+1) . Now let us first consider the case ρ ≤ β − γ. Then
the above considerations show

ε(n, a,B, c, δ, x) � x2λ
ρ+β+γ

2
n .

Furthermore, we obviously have λβ
n ≤ λ

ρ+β+γ
2

n . As in the proof of Lemma 1 we
hence find a constant C̃ > 0 such that for all x ≥ 1, n ≥ 1 we have

λ‖f̂T,λn
‖2 ≤ C̃x2λ

ρ+β+γ
2

n

with probability not less than 1 − e−x. On the other hand if ρ > β − γ we have

ε(n, a,B, c, δ, x) � x2λ
(ρ+β+γ)(2q+pq+4)+2βq(2−p)

8(q+1)
n ≤ x2λβ

n ,

so that we get λ‖f̂T,λn
‖2 ≤ C̃x2λβ

n in the above sense. ��
Proof (of Theorem 1 for q > 0). By using Lemma 2 the proof in the case q > 0
is completely analogous to the case q = 0. ��
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Appendix

Throughout this section P denotes a Borel probability measure on X × Y and
H denotes a RKHS of continuous functions over X. We use the shorthand ‖ · ‖
for ‖ · ‖H when no confusion should arise. Unlike in the other sections of this
paper, here L denotes an arbitrary convex loss function, that is, a continuous
function L : Y × R → [0,∞) convex in its second variable. The corresponding
L-risk RL,P (f) of a function f : X → R and its minimal value RL,P are defined
in the obvious way. For simplicity we also assume RL,P (0) = 1. Note that all
the requirements are met by the hinge loss function. Furthermore, let us define
fP,λ by replacing Rl,P by RL,P in (7). In addition we write

f∗
P,λ = arg min

{
‖f‖ : f ∈ arg min

‖f ′‖≤ 1√
λ

RL,P (f ′)
}

. (16)

Of course, we need to prove the existence and uniqueness of f∗
P,λ which is done

in the following lemma.

Lemma 3. Under the above assumptions f∗
P,λ is well defined.

Proof. Let us first show that there exists an f ′ ∈ λ−1/2BH which minimizes
RL,P (.) in λ−1/2BH . To that end consider a sequence (fn) in λ−1/2BH such
that RL,P (fn) → inf‖f‖≤λ−1/2 RL,P (f). By the Eberlein-Smulyan theorem we
can assume without loss of generality that there exists an f∗ with ‖f∗‖ ≤ λ−1/2

and fn → f∗ weakly. Using the fact that weak convergence in RKHS’s imply
pointwise convergence, Lebesgue’s theorem and the continuity of L then give

RL,P (fn) → RL,P (f∗) .

Hence there is a minimizer of RL,P (.) in 1√
λ
BH , i.e. we have

A :=
{

f : f ∈ arg min
‖f ′‖≤ 1√

λ

RL,P (f ′)
}
�= ∅ .

We now show that there is exactly one f∗ ∈ A having minimal norm.

Existence: Let (fn) ⊂ A with ‖fn‖ → inff∈A ‖f‖ for n → ∞. Like in the proof
establishing A �= ∅, we can show that there exists an f∗ ∈ A with fn → f∗

weakly, and RL,P (fn) → RL,P (f∗). This shows f∗ ∈ A. Furthermore, by the
weak convergence we always have

‖f∗‖ ≤ lim inf
n→∞ ‖fn‖ = inf

f∈A
‖f‖ .

Uniqueness: Suppose we have two such elements f and g with f �= g. By convex-
ity we find 1

2 (f + g) ∈ arg min‖f‖≤ 1√
λ
RL,P (f). However, ‖.‖H is strictly convex

which gives ‖ 1
2 (f + g)‖ < ‖f‖. ��
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In the following we will define the approximation error and the approximation
error function for general L. In order to also treat non-universal kernels we first
denote the minimal L-risk of functions in H by

RL,P,H := inf
f∈H

RL,P (f) .

Furthermore, we say that f ∈ H minimizes the L-risk in H if RL,P (f) = RL,P,H .
Note that if such a minimizer exists then by Lemma 3 there actually exists a
unique element f∗

L,P,H ∈ H minimizing the L-risk in H with ‖f∗
L,P,H‖ ≤ ‖f‖ for

all f ∈ H minimizing the L risk in H. Moreover we have ‖fP,λ‖ ≤ ‖f∗
L,P,H‖ for

all λ > 0 since otherwise we find a contradiction by

λ‖f∗
L,P,H‖2 + RL,P (f∗

L,P,H) < λ‖fP,λ‖2 + RL,P (fP,λ) .

Now, for λ ≥ 0 we write

a(λ) := λ‖fP,λ‖2 + RL,P (fP,λ) −RL,P,H , (17)
a∗(λ) := RL,P (f∗

P,λ) −RL,P,H . (18)

Recall, that for universal kernels and the hinge loss function we have
RL,P,H = RL,P (see [8]), and hence in this case a(.) equals the approxima-
tion error function defined in Section 2. Furthermore, for these kernels, a∗(λ) is
the “classical” approximation error of the hypothesis class λ−1/2BH . Our first
theorem shows how to compare a(.) and a∗(.).

Theorem 3. With the above notations we have a(0) = a∗(0) = 0. Furthermore,
a∗(.) is increasing, and a(.) is increasing, concave, and continuous. In addition,
we have

a∗(λ) ≤ a(λ) for all λ ≥ 0,

and for any h : (0,∞) → (0,∞) with a∗(λ) ≤ h(λ) for all λ > 0, we have

a
(
λh(λ)

) ≤ 2h(λ) for all λ > 0.

Proof. It is clear from the definitions (17) and (18) that a(0) = a∗(0) = 0 and
a∗(.) is increasing. Since a(.) is an infimum over a family of linear increasing
functions of λ it follows that a(.) is also concave and increasing. Consequently
a(.) is continuous for λ > 0 (see [12–Thm. 10.1]), and continuity at 0 follows
from the proof of [8–Prop. 3.2]. To prove the second assertion, observe that
‖fP,λ‖2 ≤ 1/λ implies RL,P (f∗

P,λ) ≤ RL,P (fP,λ) for all λ > 0 and hence we find
a∗(λ) ≤ a(λ) for all λ ≥ 0. Now let λ̃ := h(λ)‖f∗

P,λ‖−2. Then we obtain

λ̃‖fP,λ̃‖2 + RL,P (fP,λ̃) ≤ λ̃‖f∗
P,λ‖2 + RL,P (f∗

P,λ) ≤ λ̃‖f∗
P,λ‖2 + RL,P,H + h(λ)

≤ RL,P,H + 2h(λ) .

This shows a(λ̃) ≤ 2h(λ). Furthermore we have λh(λ) ≤ ‖f∗
P,λ‖−2h(λ) = λ̃ and

thus the assertion follows since a(.) is an increasing function. ��
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Our next goal is to show how the asymptotic behaviour of a(.), a∗(.) and λ �→
‖fP,λ‖ are related to each other. Let us begin with a lemma that characterizes
the existence of f∗

L,P,H ∈ H in terms of the function λ �→ ‖fP,λ‖.
Lemma 4. The minimizer f∗

L,P,H ∈ H of the L-risk in H exists if and only
if there exists a constant c > 0 with ‖fP,λ‖ ≤ c for all λ > 0. In this case we
additionally have limλ→0+ ‖fP,λ − f∗

L,P,H‖H = 0.

Proof. Let us first assume that f∗
L,P,H ∈ H exists. Then we have already seen

‖fP,λ‖ ≤ ‖f∗
L,P,H‖ for all λ > 0, so that it remains to show the convergence. To

this end let (λn) be a positive sequence converging to 0. By the boundedness of
(fP,λn

) there then exists an f∗ ∈ H and a subsequence (fP,λni
) with fP,λni

→ f∗

weakly. This implies RL,P (fP,λni
) → RL,P (f∗) as in the proof of Lemma 3.

Furthermore, we always have λni
‖fP,λni

‖2 → 0 and thus

RL,P,H = lim
i→∞

λni
‖fP,λni

‖2 + RL,P (fP,λni
) = RL,P (f∗) , (19)

where the first equality can be shown as in [8] for universal kernels. In other
words f∗ minimizes the L-risk in H and hence we have

‖fP,λni
‖ ≤ ‖f∗

L,P,H‖ ≤ ‖f∗‖ ≤ lim inf
j→∞

‖fP,λnj
‖

for all i ≥ 1. This shows both ‖fP,λni
‖ → ‖f∗‖ and ‖f∗

L,P,H‖ = ‖f∗‖, and
consequently we find f∗

L,P,H = f∗ by (19). In addition an easy calculation gives

‖fP,λni
−f∗‖2 = ‖fP,λni

‖2−2〈fP,λni
, f∗〉+‖f∗‖2 → ‖f∗‖2−2‖f∗‖2+‖f∗‖2 = 0.

Now assume that fP,λn
�→ f∗

L,P,H . Then there exists a δ > 0 and a subsequence
(fP,λnj

) with ‖fP,λnj
− f∗

L,P,H‖ > δ. On the other hand applying the above
reasoning to this subsequence gives a sub-subsequence converging to f∗

L,P,H and
hence we have found a contradiction.

Let us now assume ‖fP,λ‖ ≤ c for some c > 0 and all λ > 0. Then there
exists an f∗ ∈ H and a sequence (fP,λn

) with fP,λn
→ f∗ weakly. As in the first

part of the proof we easily see that f∗ minimizes the L-risk in H. ��
Note that if H is a universal kernel, i.e. it is dense in C(X), P is an empirical

distribution based on a training set T , and L is the (squared) hinge loss func-
tion then f∗

L,T,H ∈ H exists and coincides with the hard margin SVM solution.
Consequently, the above lemma shows that both the L1-SVM and the L2-SVM
solutions fT,λ converge to the hard margin solution if T is fixed and λ → 0.

The following lemma which shows that the function fP,λ minimizes RL,P (.)
over the ball ‖fP,λ‖BH is somewhat well-known:

Lemma 5. Let λ > 0 and γ := 1/‖fP,λ‖2. Then we have f∗
P,γ = fP,λ.

Proof. We first show that fP,λ minimizes RL,P (.) over the ball ‖fP,λ‖BH . To
this end assume the converse RL,P (f∗

P,γ) < RL,P (fP,λ). Since we also have
‖f∗

P,γ‖ ≤ 1/
√

γ = ‖fP,λ‖ we then find the false inequality

λ‖f∗
P,γ‖2 + RL,P (f∗

P,γ) < λ‖fP,λ‖2 + RL,P (fP,λ) , (20)
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and consequently fP,λ minimizes RL,P (.) over ‖fP,λ‖BH . Now assume that
fP,λ �= f∗

P,γ , i.e. ‖fP,λ‖ > ‖f∗
P,γ‖. Since RL,P (f∗

P,γ) = RL,P (fP,λ) we then again
find (20) and hence the assumption fP,λ �= f∗

P,γ must be false. ��
Let us now turn to the main theorem of this section which describes asymp-

totic relationships between the approximation error, the approximation error
function, and the function λ �→ ‖fP,λ‖.
Theorem 4. The function λ �→ ‖fP,λ‖ is bounded on (0,∞) if and only if
a(λ) � λ and in this case we also have a(λ) ∼ λ. Moreover for all α > 0 we have

a∗(λ) � λα if and only if a(λ) � λ
α

α+1 .

If one of the estimates is true we additionally have ‖fP,λ‖2 � λ− 1
α+1 and

RL,P (fP,λ) − RL,P,H � λ
α

α+1 . Furthermore, if λα+ε � a∗(λ) � λα for some
α > 0 and ε ≥ 0 then we have both

λ− α
(α+ε)(α+1) � ‖fP,λ‖2 � λ− 1

α+1 and λ
α+ε
α+1 � RL,P (fP,λ) −RL,P � λ

α
α+1 ,

and hence in particular λ
α+ε
α+1 � a(λ) � λ

α
α+1 .

Theorem 4 shows that if a∗(λ) behaves essentially like λα then the approxima-
tion error function behaves essentially like λ

α
α+1 . Consequently we do not loose

information when considering a(.) instead of the approximation error a∗(.).

Proof (of Theorem 4). If λ �→ ‖fP,λ‖ is bounded on (0,∞) the minimizer f∗
L,P,H

exists by Lemma 4 and hence we find

a(λ) ≤ λ‖f∗
L,P,H‖2 + RL,P (f∗

L,P,H) −RL,P,H = λ‖f∗
L,P,H‖2 .

Conversely, if there exists a constant c > 0 with a(λ) ≤ cλ we find λ‖fP,λ‖2 ≤
a(λ) ≤ cλ which shows ‖fP,λ‖ ≤ √

c for all λ > 0. Moreover by Theorem 3 we
easily find λa(1) ≤ a(λ) for all λ > 0.

For the rest of the proof we observe that Theorem 3 gives a(λ) ≤ a(cλ) ≤
c a(λ) for λ > 0 and c ≥ 1, and c a(λ) ≤ a(cλ) ≤ a(λ) for λ > 0 and 0 < c ≤ 1.
Therefore we can ignore arising constants by using the “�”–notation.

Now let us assume a∗(λ) � λα for some α > 0. Then from Theorem 3 we
know a(λ1+α) � λα which leads to a(λ) � λ

α
α+1 . The latter immediately implies

‖fP,λ‖2 � λ− 1
α+1 . Conversely, if a(λ) � λ

α
α+1 we define γ := ‖fP,λ‖−2. By

Lemma 5 we then obtain

a∗(γ) = RL,P (fP,λ) −RL,P,H ≤ a(λ) � λ
α

α+1 � ‖fP,λ‖−2α = γα .

Now, if f∗
L,P,H does not exists then the function λ �→ ‖fP,λ‖−2 tends to 0 if

λ → 0 and thus a∗(λ) � λα. In addition, if f∗
L,P,H exists the assertion is trivial.

For the third assertion recall that Lemma 5 states fP,λ = f∗
P,γ with γ :=

‖fP,λ‖−2 and hence we find

a(λ) = λ‖fP,λ‖2 + a∗(‖fP,λ‖−2
)
. (21)
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Furthermore, we have already seen ‖fP,λ‖−2 � λ
1

α+1 , and hence we get

λ
α

α+1 � RL,P (fP,λ) −RL,P = a∗(‖fP,λ‖−2
) � ‖fP,λ‖−2(α+ε) � λ

α+ε
α+1 .

Combining this with (21) yields the third assertion. ��
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